Blogger Widgets

Senin, 23 November 2015

PERBEDAAN ANTARA:

1. Lampu Pijar

Cahaya lampu pijar berasal dari nyala filamen, kawat tipis dari tungsten (nama lain untuk wolfram). Saat lampu dinyalakan, arus listrik memanaskan filamen hingga suhu 2.200 derajat celsius hingga filamen berpijar. Supaya panas terkonsentrasi di sekitar filamen, tungsten ditempatkan dalam bola lampu kedap udara.


Gambar Bagan Lampu Pijar

Karena cahaya lampu dari proses pemanasan, kestabilan arus listrik menentukan nyala lampu. Tegangan listrik turun, suplai arus berkurang, lampu meredup. Hal sebaliknya juga berlaku.

Suhu pemanasan yang tak terlalu tinggi membuat pancaran sinar berwarna kuning. Intensitas cahaya atau tingkat kecerahan lampu pijar hanya sekitar 15 lumen/watt. Akibatnya, untuk menghasilkan cahaya lebih terang butuh energi listrik besar.

Namun, sebesar apa pun arus listrik yang diberikan, lebih dari 90% nya diubah jadi panas. Hanya 5 persen listrik yang diubah jadi cahaya. Itu jelas tidak efisien dan boros listrik.


Pemanasan filamen terus-menerus akan mengikis permukaan tungsten hingga penampang kawat mengecil hingga filamen putus dan lampu tak bisa digunakan lagi. Mudah putusnya filamen membuat usia hidup lampu hanya 1.000 jam atau empat bulan untuk pemakaian 8 jam per hari.


2. Lampu LED

Meski lebih hemat dari lampu pijar, keberadaan merkuri yang merupakan logam berat dalam lampu pendar jadi masalah baru karena merusak lingkungan dan mengganggu kesehatan. Tuntutan ada lampu yang kian hemat tetap ada. Selain itu, lampu masa depan pun harus bisa diaplikasikan lebih luas.

Lahirlah lampu berteknologi dioda pemancar cahaya (light-emitting diode/LED). Penelitian lampu LED dimulai 1960-an dengan menghasilkan lampu LED merah dan hijau. Baru pada 1990-an, LED biru hadir. Dengan temuan LED biru, LED putih bisa dibuat.
Gambar Bagan Lampu Pedar

Temuan atas LED biru itulah yang membuat ilmuwan Jepang Isamu Akasaki, Hiroshi Amano, dan Shuji Nakamura dianugerahi hadiah Nobel Fisika 2014.

Sumber pencahayaan lampu LED berasal dari dioda berupa semikonduktor dari material padat dan mampu mengalirkan arus listrik. Energi yang dilepaskan dari gerakan elektron dalam semikondutor itulah yang akan menghasilkan cahaya.

Saat listrik dialirkan, elektron bebas dari bagian negatif semikonduktor yang diperkaya elektron bebas mengalir ke bagian positif. Saat bersamaan, lubang elektron pada bagian positif bergerak ke bagian negatif.

Gerakan itu membuat elektron bebas jatuh ke lubang elektron. Akibatnya, elektron turun ke tingkat energi yang lebih stabil dan melepaskan foton/cahaya. Kian tinggi energi foton yang dihasilkan, cahaya yang dihasilkan kian tinggi frekuensinya atau panjang gelombangnya.

Oleh karena itu, warna cahaya yang diperoleh lampu LED bergantung pada campuran materi penyusun diodanya. Misalnya, campuran aluminium, galium, dan arsenik akan menghasilkan cahaya merah. Perpaduan indium, galium, dan nitrida memberi warna biru.

Dibandingkan ukuran pembangkit cahaya lampu pijar dan pendar, ukuran LED sangat kecil, luasnya kurang dari 1 milimeter persegi. ”Semakin besar LED, susunan atomnya makin mudah rusak sehingga sifat elektriknya berkurang,” ujar Rahmat yang juga meneliti LED.

Oleh karena itu, untuk membuat sebuah bola lampu umumnya tersusun beberapa LED. Ukuran kecil juga memungkinkan lampu LED ditempatkan pada berbagai sirkuit elektronik untuk beragam pencahayaan.

Tak hanya penerangan rumah atau jalan, rangkaian LED juga dimanfaatkan untuk pencahayaan beragam alat elektronik, mulai pengendali jarak jauh, layar monitor, telepon pintar, hingga televisi. Bahkan, LED juga bisa sebagai pengganti sinar matahari untuk menumbuhkan tanaman dalam ruang.

Lebih dari 50 persen energi listrik pada LED diubah jadi cahaya. Itu membuat LED lebih efisien dibandingkan lampu pendar, apalagi lampu pijar. Setiap 1 watt listrik mampu menghasilkan cahaya berintensitas 70-100 lumen. Usia pakai bisa lebih lama hingga 50.000 jam.

Proses produksi yang rumit membuat harga lampu LED masih mahal. Namun, jika dihitung biaya total pembelian dan pemakaian listrik, penggunaan LED tetap lebih murah.

Selain itu, LED juga rentan dengan temperatur tinggi yang akan membuatnya terlalu panas dan gagal beroperasi. Oleh karena itu, LED butuh arus listrik stabil dan pemasangan sirkuit listrik secara tepat.


Gambar Bagan Bola Lampu LED
 
 

3. Lampu Pedar (Lampu Hemat Energi)

Sifat boros lampu pijar mendorong ilmuwan dan perekayasa mencari bola lampu baru lebih efisien terkait energi. Lahirlah lampu pendar atau lampu fluorosensi pada 1938.

Lampu ini paling banyak digunakan di Indonesia, baik tabung (tubular lamp/TL) maupun kompak. Sebagian masyarakat menyebutnya lampu neon karena banyak digunakan pada neon box atau papan reklame.

Sejatinya, kedua lampu itu berbeda jenis. Proses menghasilkan cahaya keduanya sama, lewat proses eksitasi elektron. Namun, kandungan gas yang dieksitasi berbeda. Eksitasi pada lampu neon hanya sekali, sedangkan lampu pendar dua kali.

Saat lampu dialiri listrik, elektroda pada ujung tabung lampu pendar memancarkan elektron bebas. Elektron itu akan mengionisasi gas argon dalam tabung bertekanan rendah.

Arus listrik membuat elektron bebas dan ion gas argon bergerak cepat dari satu elektroda ke elektroda lain. Arus listrik juga mengubah merkuri dalam tabung dari cair jadi gas. Proses itu akan membuat partikel bergerak (elektron dan ion) bertabrakan dengan atom merkuri. Akibatnya, elektron merkuri tereksitasi, turun ke tingkat energi lebih stabil dan melepaskan energi dalam bentuk foton atau cahaya ultraviolet.

Selanjutnya, cahaya ultraviolet akan mengeksitasi atom fosfor pada lapisan dalam tabung. Fosfor itu pula yang memberi warna putih tabung. Pada proses eksitasi lanjutan itu akan dihasilkan cahaya tampak putih terlihat mata. Variasi cahaya lampu pendar bisa diatur berdasarkan komposisi fosfor".

Proses eksitasi lanjutan itu tak ada pada lampu neon. Gas yang digunakan pun tidak hanya argon, tapi juga neon dan kripton. Neon menghasilkan cahaya merah, sedang gas lain menghasilkan warna berbeda.


Lampu pendar menghasilkan intensitas cahaya lebih baik dari lampu pijar, 67 lumen/watt. Pengubahan cahaya ultraviolet menjadi cahaya tampak juga menghasilkan panas yang hilang ke lingkungan, tapi jumlahnya lebih sedikit. Usia rata-rata lampu lebih lama, 8.500-10.000 jam.
Gambar Bagan Lampu Pedar

Senin, 09 November 2015


Pengertian Dioda

Pengertian Dioda adalah komponen aktif yang memiliki dua kutub dan bersifat semikonduktor. Dioda juga bisa dialiri arus listrik ke satu arah dan menghambat arus dari arah sebaliknya. Dioda sebenarnya tidak memiliki karakter yang sempurna, melainkan memiliki karakter yang berhubungan dengan arus dan tegangan komplek yang tidak linier dan seringkali tergantung pada teknologi yang digunakan serta parameter penggunaannya.
Awal mulanya dioda adalah sebuah piranti kristal Cat’s Wahisker dan tabung hampa. Sedangkan pada saat ini, dioda sudah banyak dibuat dari bahan semikonduktor, contohnya : Silikon dan Germanium. Di karenakan pengembangannya yang dilakukan secara terpisah, dioda kristal (semikonduktor) lebih populer di bandingkan dengan dioda termionik. Dioda termionik pertama kali ditemukan oleh Frederick Guthrie pada tahun 1873, sedangkan dioda kristal ditemukan pada tahun 1874 oleh peneliti asal Jerman, Karl Ferdinand Braun.

Gambar Tentang Pengertian Dioda

Pengertian Dioda
Pengertian Dioda Termionik adalah piranti katub yang merupakan susunan elektroda di dalam sampul gelas. Bentuk pertama kali dari dioda termionik hampir sama dengan bola lampu pijar. Di dalam katub dioda termionik, arus listrik yang melalui filamen pemanas secara tidak langsung memanaskan katoda. Elektroda internal lainnya dilapisi dengan campuran barium dan strontium oksida yang merupakan oksida dari logam alkali tanah. Dari kegiatan tersebut menghasilkan pancaran termionik elektron ke ruang hampa. Walaupun demikian, elektron tidak dapat di pancarkan dengan mudah ke permukaan anoda yang tidak terpanasi ketika polaritas tegangan di balik.
Pengertian Dioda Semikondutor sebagian besar terdapat pada teknologi pertemuan P-N semikonduktor. Dioda P-N terdapat arus yang mengalir dari sisi Tipe-P (anoda) menuju sisi Tipe-N (katoda), akan tetapi tidak dapat mengalir ke arah sebaliknya. Dioda semikonduktor memiliki tipe lain yaitu dioda schottky yang di bentuk dari pertemuan antara logam dan semikonduktor sebagai ganti dari pertemuan P-N konvensional.
Demikain penjelasan singkat mengenai pengertian dioda, semoga artikel kali ini dapat berguna dan bermanfaat bagi anda semua. Baca juga artikel menarik lainnya, seperti

2.BENTUK DIODA


Berikut ini adalah pengertian dari Jenis-Jenis Dioda :
Dioda Emisi CahayaLight Emiting Diode (Dioda Emisi Cahaya)
Dioda yang sering disingkat LED ini merupakan salah satu piranti elektronik yang menggabungkan dua unsur yaitu optik dan elektronik yang disebut juga sebagai Opteolotronic.dengan masing-masing elektrodanya berupa anoda (+) dan katroda (-), dioda jenis ini dikategorikan berdasarkan arah bias dan diameter cahaya yang dihasilkan, dan warna nya.

Diode Photo (Dioda Cahaya)

Dioda Photo
Dioda jenis ini merupakan dioda yang peka terhadap cahaya, yang bekerja pada pada daerah-daerah reverse tertentu sehingga arus cahaya tertentu saja yang dapat melewatinya, dioda ini biasa dibuat dengan menggunakan bahan dasar silikon dan geranium. Dioda cahaya saat ini banyak digunakan untuk alarm, pita data berlubang yang berguna sebagai sensor, dan alat pengukur cahaya (Lux Meter).
Diode Varactor
Diode Varactor (Dioda Kapasitas)
Dioda jenis ini merupakan dioda yang unik, karena dioda ini memiliki kapasitas yang dapat berubah-ubah sesuai dengan besar kecilnya tegangan yang diberikan kepada dioda ini, contohnya jika tegangan yang diberikan besar, maka kapasitasnya akan menurun,berbanding terbalik jika diberikan tegangan yang rendah akan semakin besar kapasitasnya, pembiasan dioda ini secara reverse. Dioda jenis ini banyak digunakan sebagai pengaturan suara pada televisi, dan pesawat penerima radio.
Diode Rectifier
Diode Rectifier (Dioda Penyearah)
Dioda jenis ini merupakan dioda penyearah arus atau tegangan yang diberikan, contohnya seperti arus berlawanan (AC) disearahkan sehingga menghasilkan arus searah (DC). Dioda jenis ini memiliki karakteristik yang berbeda-beda sesuai dengan kapasitas tegangan yang dimiliki.
Dioda Zener
Diode Zener
Dioda jenis ini merupakan dioda yang memiliki kegunaan sebagai penyelaras tegangan baik yang diterima maupun yang dikeluarkan, sesuai dengan kapasitas dari dioda tersebut, contohnya jika dioda tersebut memiliki kapasitas 5,1 V, maka jika tegangan yang diterima lebih besar dari kapasitasnya, maka tegangan yang dihasilkan akan tetap 5,1 tetapi jika tegangan yang diterima lebih kecil dari kapasitasnya yaitu 5,1, dioda ini tetap mengeluarkan tegangan sesuai dengan inputnya.
Dapat disimpulkan bahwa Jenis-Jenis Dioda tersebut memiliki berbagai kegunaan tersendiri yang dapat memanipulasi berbagai tegangan yang masuk melalui dioda tersebut. Jenis-jenis Dioda diatas merupakan beberapa contoh jenis dioda yang saat ini sudah ada dan dikembangkan, masih banyak lagi contoh lain dari jenis dioda ini.

3.Cara Kerja Dioda

Cara Kerja Dioda merupakan prinsip dan langkah-langkah dioda dapat bekerja sebagai pendukung komponen perangkat elektronik. Dengan merupakan salah satu dari rangkaian pembentuk perangkat elektronik yang bersifat aktif. Dikatakan bersifat aktif ini karena dioda dapat bekerja dengan adanya muatan listrik yang melewati komponen-komponennya. Pada era modern ini, banyak sekali perangkat elektronik yang membutuhkan dioda sebagai salah satu komponennya. Dalam kehidupan sehari-hari kita bisa menemukan berbagai perangkat elektronik dengan penggunaan dioda sebagai komponen pendukungnya. Seperti televisi, amplifier, radio, lampu, AC, lemari es, dan perangkat-perangkat lainnya. Semua alat elektronik diatas menggunakan dioda karena dioda dapat memaksimalkan arus listrik bolak-balik sehingga bisa meningkatkan kinerja pada peralatan tersebut. Pada dioda selalu ada dua hal yang terkait, yakni katoda (+) dan anoda (-) yang saling berlawanan dan dilambangkan dengan panah yang menggambarkan ujung negative atau anoda, sedangkan lambang huruf ‘T’ terbaring untuk simbol sisi positif atau katoda pada dioda.

Gambar Skema Prinsip Kerja Dioda






Prinsip Kerja Dioda Secara Umum
 

Fungsi Dioda

Advertisement
Fungsi Dioda sangat penting didalam rangkaian elektronika. Karena dioda adalah komponen semikonduktor yang terdiri dari penyambung P-N. Dioda merupakan gabungan dari dua kata elektroda, yaitu anoda dan katoda. Sifat lain dari dioda adalah menghantarkan arus pada tegangan maju dan menghambat arus pada aliran tegangan balik. Selain itu, masih banyak lagi fungsi dioda lainnya, sebagai berikut :
  • Sebagai penyearah untuk komponen dioda bridge.
  • Sebagai penstabil tegangan pada komponen dioda zener.
  • Sebagai pengaman atau sekering.
  • Sebagai pemangkas atau pembuang level sinyal yang ada di atas atau bawah tegangan tertentu pada rangkaian clipper.
  • Sebagai penambah komponen DC didalam sinyal AC pada rangkaian clamper.
  • Sebagai pengganda tegangan.
  • Sebagai indikator untuk rangkaian LED (Light Emiting Diode).
  • Dapat digunakan sebagai sensor panas pada aplikasi rangkaian power amplifier.
  • Sebagai sensor cahaya pada komponen dioda photo.
  • Sebagai rangkaian VCO (Voltage Controlled Oscilator) pada komponen dioda varactor.
Secara keseluruhan dioda dapat kita contohkan sebagai katup, dimana katup tersebut akan terbuka pada saat air mengalir dari belakang menuju ke depan. Sedangkan katup akan menutup apabila ada dorongan aliran air dari depan katub. Simbol dioda digambarkan dengan anak panah yang diujungnya terdapat garis yang melintang. Cara kerja dioda dapat kita lihat dari simbolnya. Karena pada pangkal anak panah disebut sebagai anoda (P) dan pada ujung anak panah dapat disebut sebagai katoda (N).

Gambar Tentang Fungsi Dioda


Fungsi Dioda
Pada umumnya, dioda terbuat dari bahan silikon yang sudah dibekali tegangan pemicu. Tegangan pemicu ini sangat diperlukan agar elektron bisa langsung mengisi hole melalui area depletin layer. Didalam komponen dioda tidak akan terjadi pemindahan elekrton hole dari P ke N maupun sebaliknya. Itu di sebabkan hole dan elektron akan tertarik ke arah kutub yang berlawanan. Bahkan lapisan depletion layer semakin besar dan menghalangi terjadinya arus.
 5.POWER SUPPLY(ADAPTOR)SEDERHANA

1. Skema Power supply Sederhana


Daftar Komponen
  • Transformator
  • Dioda 4 buah atau Dioda Bridge
  • Elco ( Electrolit Condensator ) 1000uF/16V

Contoh penyambungan power supply 12 Volt DC


6.Cara Menggunakan Multimeter / Multitester

Cara Menggunakan Multimeter – Multimeter adalah alat yang berfungsi untuk mengukur Voltage (Tegangan), Ampere (Arus Listrik), dan Ohm (Hambatan/resistansi) dalam satu unit. Multimeter sering disebut juga dengan istilah Multitester atau AVOMeter (singkatan dari Ampere Volt Ohm Meter). Terdapat 2 jenis Multimeter dalam menampilkan hasil pengukurannya yaitu Analog Multimeter (AMM) dan Digital Multimeter (DMM).
Sehubungan dengan tuntutan akan keakurasian nilai pengukuran dan kemudahan pemakaiannya serta didukung dengan harga yang semakin terjangkau, Digital Multimeter (DMM) menjadi lebih populer dan lebih banyak dipergunakan oleh para Teknisi Elektronika ataupun penghobi Elektronika.
Dengan perkembangan teknologi, kini sebuah Multimeter atau Multitester tidak hanya dapat mengukur Ampere, Voltage dan Ohm atau disingkat dengan AVO, tetapi dapat juga mengukur Kapasitansi, Frekuensi dan Induksi dalam satu unit (terutama pada Multimeter Digital). Beberapa kemampuan pengukuran Multimeter yang banyak terdapat di pasaran antara lain :
  • Voltage (Tegangan) AC dan DC satuan pengukuran Volt
  • Current (Arus Listrik) satuan pengukuran Ampere
  • Resistance (Hambatan) satuan pengukuran Ohm
  • Capacitance (Kapasitansi) satuan pengukuran Farad
  • Frequency (Frekuensi) satuan pengukuran Hertz
  • Inductance (Induktansi) satuan pengukuran Henry
  • Pengukuran atau Pengujian Dioda
  • Pengukuran atau Pengujian Transistor

Bagian-bagian penting Multimeter

Multimeter atau multitester pada umumnya terdiri dari 3 bagian penting, diantanya adalah :
  1. Display
  2. Saklar Selektor
  3. Probe
Gambar dibawah ini Merupakan bagian penting dari Multimeter Digital dan Analog;


Senin, 28 September 2015

Voltage Power Suplay PC

Oleh Nanang Suryana | Kamis, April 26, 2012 | , , | 25 Komentar »
Power dari power supply dibagi menjadi beberapa connector yang membagi antara 12V, 5V dan 3.3Volt. Untuk mengetahui keluaran power dengan pasti cara termudah adalah memeriksa output power ketika power sedang menyala.

Berikut cara memeriksa power supply PC/komputer mengunakan multimeter:

Susunan kabel pada power supply
Pada format power supply masih dibagi antara beberapa form factor. Standard power supply ATX dan BTX tetap mengunakan 3 bagian voltage seperti yang dikemukakan diatas. Versi ATX saat ini sudah memiliki versi 1.3 dimana terdapat tambahan power SATA untuk perangkat terbaru seperti SATA harddisk. Sedangkan form factor terbaru adalah BTX yang merubah pemakaian AUX dan menambahkan pin main power dari 20pin menjadi 24 pin. Tetapi dasarnya tetap sama dimana 12V, 5V dan 3.3V adalah voltage yang digunakan pada output voltage power.
Dibawah ini adalah gambaran connector dari power supply dengan masing masing output voltage menurut standard power supply ATX.
Connector pada power supply ke mainboard:





3.3 volt

Untuk memeriksa voltage 3.3V dapat digunakan 2 connector. Pertama adalah dengan mengunakan cable Main Connector. Dan mencari kabel berwarna Orange dengan Black, Orange adalah 3.3V+ dan Black adalah 3.3V-.

Tetapi cara termudah adalah mengunakan cable yang tidak terpakai seperti AUX connector yang terdiri dari 5V+, 3.3V+.3.3V+, Com, , Com, Com. Caranya seperti pada gambar dibawah ini. Dimana cabel Aux connector dihubungkan antara Plus dengan Orange dan Minus dengan Black untuk memeriksa 3.3 Volt

5 Volt dan dan 12V

Untuk memeriksa 12V dan 5V paling mudah.

Gunakan cable Peripheral connector dengan warna Red, Black, Black dan Yellow.

Untuk mendapatkan 5V, hubungkan multimeter antara Plus Red dengan Black Minus.


Sedangkan 12V dihubungkan antara Plus Yellow dan Black Minus
Toleransi power

Tidak semua power akan menunjukan angka persis 12V, 5V dan 3.3V. Toleransi power dapat dilihat pada bagian gambar dibawah ini.

Misalnya power anda memiliki output 3.4V atau 3.45V pada 3.3V. Output tersebut masih dapat diterima dengan batas toleransi. Dan 5V dengan 12V masih dapat diterima bila tidak melebih 5.25V dan 13V

Umumnya output power supply berada diantara persentase pada gambar diatas. Untuk kondisi terbaik, voltage 3.3V tidak lebih dari 3.4V. Untuk 12V tidak lebih dari 12.5V dan 5V tidak lebih dari 5.2V. Bahkan pada beberapa power supply juga dapat menunjukan voltage lebih rendah tetapi bila tidak terlalu rendah hal ini masih dapat diterima dari persentase batas teleransi maka power masih memiliki output yang memadai.

Untuk kondisi tidak normal, output power supply berada diatas ambang batas persentasi seperti gambar diatas. Terlalu tinggi akan menyebabkan perangkat menjadi over voltage dan menjadi panas, terlalu rendah juga akan memberikan ketidaktabilan pada CPU atau perangkat hardware.

Kedepan dengan BTX

Sedikit ulasan pada BTX power. Perubahan pada standard ATX dan BTX sebenarnya hanya terletak pada 4 pin tambahan. ATX memiliki 20pin power sedangkan BTX memiliki 24pin power. Dibawah ini adalah letak perbedaan pada power BTX jack power mainboard (bukan jack power connector power supply) dimana pada bagian paling bawah yang diberikan warna adalah 4 pin tambahan baru pada standard BTX

Uraian diatas sedikit memberikan pengetahuan bagaimana memeriksa power supply. Yang perlu di ingat adalah power supply tidak akan memiliki output yang presisi seperti harus menunjukan angka 12.0V, 5.0V dan 3.30V. Dipastikan ada sedikit perubahan angka baik lebih besar dan lebih kecil. Tetapi output power haruslah sesuai ketentuan dari batas toleransi, dan tidak melebihi toleransi maka power supply masih memiliki output yang benar dan layak digunakan.

Untuk kondisi terbaik pemeriksaan power ada yang mengunakan cara memeriksa output dengan kondisi power tanpa beban atau tidak dipasangkan pada perangkat computer. Tetapi ada yang memilh cara mudah dengan memeriksa ketika power supply sedang dihubungkan keperangkat PC atau mainboard. Cara ini memiliki dampak baik dan buruk. Bila power supply diperiksa ketika dipasangkan hardware nilai positifnya akan memperlihatkan kondisi sebenarnya output power yang dikeluarkan oleh power supply. Disisi lain power bisa saja menunjukan angka voltage dibawah atas diatas normal karena adanya beban dari pemakaian daya pada power supply. Asalkan tidak melewati batas toleransi maka output power supply dapat diterima. Asalkan power supply memang memiliki kekuatan atau output power yang memadai dan cukup menyuplai daya ke perangkat computer.

Bila anda berkeinginan memeriksa power output pada power supply, sebaiknya cukup berhati hati jangan sampai terjadi short atau terjadinya hubungan antara plus dan minus. Seperti biasa, resiko ditangan anda ketika sedang memeriksa dan harus sangat hati hati untuk menghubungkan multimeter ke connector power supply.
Dari: Berbagai sumber
Semoga bermanfaat.
Pin power supply

a. ATX power connector (20pin + 4pin) :
 
 
 
conn_atx_classic2 ATX 20/24 pin konektor digunakan untuk menghubungkan power supply unit (PSU) ke motherboard. Versi lama dari ATX motherboard masih menggunakan ATX 20 pin konektor, jika kita menggunakan motherboard yang terbaru sudah membutuhkan ATX 24 pin konektor. Konetktor ini terdiri dari 2 bagian. Bagian pertama berjumlah 20 pin dan bagian kedua 4 pin. Jika kita menggunakan motherboard yang baru maka gabungkan antara 20 + 4 pin konektornya.
 
b. AT power connector (12 pin) :
 
images
Konektor ini digunakan untuk motherboard kelas Pentium II kebawah. Konektor yang memiliki 12 kabel ini dikelompokkan terpisah menjadi 2 bagian. Bagian pertama disebut Konektor P8 dan bagian kedua disebut P9. Masing-masing konektor memiliki 6 kabel. Untuk menghindari kesalahan dalam pemasangan, kita cukup mempertemukan konektor yang memiliki kabel hitam di tengah-tengah.
 
c. Molex connector :
 
4pin-power-Molex
Konektor ini digunakan sumber tenaga bagi harddisk dan cd drive. Kadang sebagian produsen juga membuat fan / kipas pendingin, lampu-lampu dan asesoris lainnya menggunakan konektor ini. Konektor ini memiliki 4 kabel yang berbeda warna, yaitu Merah, Hitan dan Kuning. Setiap warna memiliki sumber tegangan yang berbeda-beda pula.
d. Berg connector :
 
1796421403087750607
Merupakan konektor ukuran mini dari Molek. Konektor ini khusus digunakan untuk Floppy Drive atau pun external audio card. Warna yang digunakan sama dengan molek konektor, yaitu Warna Kuning (+12V), Merah (+5V) dan Hitam (0V atau Ground). Karena penggunaan konektor ini jarang sekali, makanya pada setiap PSU hanya berjumlah 1 atau 2 paling banyak.
e. ATX 12V (Intel) 4 pin connector :
 
eps4plus4
Konektor ini kebanyakan dipakai oleh para pengguna yang menggunakan Processor buatan Intel. Fungsi dari konektor ini adalah sebagai penyedia tenaga tambahan sebesar 12 V untuk Pentium 4 CPU. Jadi pada Pentium 4 kebawah, konektor ini tidak perlu digunakan. Sekarang sebagian AMD motherboard juga sudah menggunakan konektor ATX 12V ini.
f. pin PCI-E connector :
 
162146-front2
Konektor yang satu ini memang jarang ditemukan untuk semua PC. Biasanya orang yang menggunakan PSU ini adalah orang yang bekerja di bidang Multimedia khususnya Video. Karena konektor ini hanya digunakan sebagai penambah daya untuk video card yang menggunakan slot PCI Express. Jika kita menggunakan Videoa Card jenis ini, tentu saja kita harus memiliki PSU yang mendukung untuk konektor ini.
g. SATA Power connector :
 
satapowerfaq
Konektor ini merupakan jenis terbaru yang biasa digunakan untuk power pada Hard Disk SATA (serial ATA). Konektor ini disambungkan melalui Molek konektor (extended).
 

Pengertian Power Supply

Pengertian Power Supply adalah sebagai alat atau perangkat keras yang mampu menyuplai tenaga atau tegangan listrik secara langsung dari sumber tegangan listrik ke tegangan listrik yang lainnya. Power supply biasanya digunakan untuk komputer sebagai penghantar tegangan listrik secara langsung kepada komponen-komponen atau perangkat keras lainnya yang ada di komputer tersebut, seperti hardisk, kipas, motherboard dan lain sebagainya. Power supply memiliki input dari tegangan yang berarus alternating current (AC) dan mengubahnya menjadi arus direct current (DC) lalu menyalurkannya ke berbagai perangkat keras yang ada dikomputer kita. Karena memang arus direct current (DC)-lah yang dibutuhkan untuk perangkat keras agar dapat beroperasi, direct current biasa disebut juga sebagai arus yang searah sedangkan alternating current merupakan arus yang berlawanan.





http://komponenelektronika.biz/wp-content/uploads/2014/03/Pengertian-Power-Supply.jpg

Senin, 07 September 2015

Pengertian Arus AC dan DC


AC atau Alternating Current merupakan arus yang terjadi pada gelombang dengan frekuensi sebanyak 50 kali dalam 1 detik atau HZ pada simbolnya. Arus AC secara umum banyak digunakan dalam bidang perkantoran, industri, bangunan, toko dan perumahan.

Arus AC bisa ditentukan jumlah besar daya atau skala yang diinginkan, namun hal itu tergantung dengan seberapa MCB atau Miniature Circuit Breaker yang dikeluarkan untuk digunakan. Arus AC dapat dibesarkan tingkat tegangannya dengan menggunakan alat yang disebut transformator step up, jika voltase naik maka pada ampere (i) akan turun dan begitu juga sebaliknya.



Arus AC-DC

B. Pengertian Arus DC
Arus DC atau dalam istilah ilmiahnya dinamakan Diret Current merupakan arus listrik yang tidak mempunyai gelombang frekuensi. DC tidak ditemukan pada listrik instalasi, akan tetapi DC secara umum ditemukan pada baterai atau akumulator.

Baca Perubahan Bentuk Air Mata dilihat dengan Mikroskop

Arus DC bisa berfungsi apabila dihasilkan melalui arus AC, akan tetapi sebelum itu arus AC harus diconvert terlebih dahulu menjadi arus DC menggunakan alat Rectifier bright yaitu Perubahan arus listrik AC ke DC. Arus DC sering digunakan untuk instalasi elektro pada arus lemah, jika arus DC dengan beban yang besar, biasanya digunakan untuk mobil yang menggunakan dinamo listrik.

C. Kelebihan dan Kekurangan arus AC
  • Kekurangan AC tidak dapat dibawa, hal ini karena arus AC tidak bisa ditempatkan pada suatu wadah seperti baterai dan lainnya.
  • Kelebihan arus AC adalah dapat dirubah jumlah skala tegangannya, baik itu dinaikkan dan diturunkan.
D. Kelebihan dan Kekurangan arus DC
  • Kekurangan arus DC adalah adanya keterbatasan pasokan listrik, maka dari itu perlu melakukan isi ulang/cas
  • Kelebihan arus DC adalah dapat dibawa kemana saja.
^^Mungkin ini saja penjelasan tentang Arus AC dan DC (Pengertian, Kelebihan dan Kekurangan), semoga bermanfaat bagi kita semua. Jangan lupa untuk membaca postingan menarik tentang Cara Merawat Ponsel Agar Tidak Cepat Rusak

  HARI:SELASA TANGGAL: 8-09-2015

Berikut Simbol Listrik dan Simbol Komponen Elektronika

SIMBOL NAMA KOMPONEN KETERANGAN
Simbol Sambungan
Simbol Kabel Kabel/ Wire Listrik Kabel penghubung (konduktor)
Simbol Kabel Terhubung Koneksi kabel Terhubung
Simbol Kabel Tak terhubung Kabel tidak koneksi Terputus (tidak terhubung)
Simbol Saklar (Switch) dan Simbol Relay
Simbol Saklar Toggle Switch SPST Terputus dalam kondisi open
Simbol Saklar Toggle Switch SPDT Memilih dua terminal koneksi
Simbol Saklar Saklar Push-Button (NO) Terhubung ketika ditekan
Simbol Saklar Saklar Push-Button (NC) Terputus ketika ditekan
Simbol Saklar DIP Switch Multiswitch(Saklar banyak)
Simbol Saklar Relay SPST Koneksi (Open dan Close) digerakan oleh elektromagnetik.
Simbol Saklar Relay SPDT
Simbol Saklar Jumper Koneksi dengan pemasangan jumper
Simbol Saklar Solder Bridge Koneksi dengan cara disolder
Simbol Ground
Simbol Ground Earth Ground Referensi 0 sebuah sumber listrik
Simbol Ground Chassis Ground Ground yang dihubungkan pada body sebuah rangkaian listrik
Simbol Ground Common/ Digital Ground
Simbol Resistor
Simbol Resistor Resistor Resistor berfungsi untuk menahan arus yang mengalir dalam rangkaian listrik
Simbol Resistor Resistor
Simbol Potensio Potensio Meter Menahan arus dalam rangkaian listrik tetapi nilai resistansi dari 3 titik terminal dapat diatur
Simbol Potensio Potensio Meter
Simbol Variable Resistor Variable Resistor Menahan arus dalam rangkaian listrik tetapi nilai resistansi dari 2 titik terminal dapat diatur
Simbol Variable Resistor Variable Resistor
Simbol Condensator (Kapasitor)
Simbol Condensator Condensator Bipolar Berfungsi untuk menyimpan arus listrik sementara waktu
Simbol Condensator Condensator Nonpolar
Simbol Condensator Condensator Bipolar Electrolytic Condensator (ELCO)
Simbol Condensator Kapasitor berpolar Electrolytic Condensator (ELCO)
Simbol Condensator Kapasitor Variable Condensator yang nilai kapasitansinya dapat diatur
Simbol Kumparan (Induktor)
Simbol Lilitan Induktor, lilitan, kumparan, spul, coil Dapat menghasilkan medan magnet ketika dialiri arus listrik
Simbol Lilitan Induktor dengan inti besi Kumparan dengan inti besi seperi pada trafo
Simbol Lilitan Variable Induktor Lilitan yang nilai induktansinya dapat diatur
Simbol Power Supply
Simbol Power Supply Sumber tegangan DC Menghasilkan tegangan searah tetap (konstan)
Simbol Power Supply Sumber Arus Menghasilkan sumber arus tetap
Simbol Power Supply Sumber tegangan AC Sumber teganga bolak-balik seperti dari PLN (Perusahaan Listrik Negara)
Simbol Power Supply Generator Penghasil tegangan listrik bolah-balik seperti pembangkit listrik di PLN (Perusahaan Listrik Negara)
Simbol Battery Battery Menghasilkan tegangan searah tetap
Simbol Battery Battery lebih dari satu Cell Menghasilkan tegagan searah tetap
Simbol Regulator Sumber tegangan yang dapat diatur Sumber tegangan yang berasal dari rangkaian listrik lain
Simbol Regulator Sumber arus yang dapat diatur Sumber arus yang berasal dari rangkaian listrik lain
Simbol Meter (Alat Ukur)
Simbol Volt Meter Volt Meter Mengukur tegangan listrik dengan satuan Volt
Simbol Ampere Meter Ampere Meter Mengukur arus listrik dengan satuan Ampere
Simbol Ohm Meter Ohm Meter Mengukur resistansi dengan satuan Ohm
Simbol Watt Meter Watt Metter Mengukur daya listrik dengan satuan Watt
Simbol Lampu
Simbol Lampu Lampu Akan menghasilkan cahaya ketika dialiri arus listrik
Simbol Lampu Lampu
Simbol Lampu Lampu
Simbol Dioda
Simbol Dioda Dioda Berfungsi sebagai penyearah yang dapat mengalirkan arus listrik satu arah (forward bias)
Simbol Dioda Zener Dioda Zener Penyetabil Tegangan DC (Searah)
Simbol Dioda Schottky Dioda Schottky Dioda dengan drop tegangan rendah, biasanya terdapat dalam IC logika
Simbol Dioda Varactor Dioda Varactor Gabungan Dioda dan Kapasitor
Simbol Dioda Tunnel Dioda Tunnel Dioda Tunnel
Simbol LED LED (Light Emitting Diode) Akan menghasilkan cahaya ketika dialiri arus listrik DC satu arah
Simbol Photo Dioda Photo Dioda Menhasilkan arus listrik ketika mendapat cahaya
Simbol Transistor
Simbol Transistor NPN Transitor Bipolar NPN Arus listrik akan mengalir (EC) ketika basis (B) diberi positif
Simbol Transistor PNP Transistor Bipolar PNP Arus listrik akan mengalir (CE) ketika basis (B) diberi negatif
Simbol Transistor Darlington Transitor Darlington Gabungan dari dua transistor Bipolar untuk meningkatkan penguatan
Simbol Transistor JFET N Transistor JFET-N Field Effect Transistor kanal N
Simbol Transistor JFET P Transistor JFET-P Field Effect Transistor kanal P
Simbol Transistor NMOS Transistor NMOS Transistor MOSFET kanal N
Simbol Transistor PMOS Transistor PMOS Transistor MOSFET kanal P
Simbol Komponen Lain
Simbol Motor Listrik Motor Motor Listrik
Simbol Trafo Trafo, Transformer, Transformator Penurun dan penaik tegangan AC (Bolak Balik)
Simbol Bel Listrik Bel Listrik Berbunyi ketika dialiri arus listrik
Simbol Buzzer Buzzer Penghasil suara buzz saat dialiri arus listrik
Fuse, Sikring Pengaman. Akan putus ketika melebihi kapasitas arus
Simbol Sikring Fuse, Sikring
Simbol Bus Bus Terdiri dari banyak jalur data atau jalur address
Simbol Bus Bus
Simbol Bus Bus
Simbol Opto Coupler Opto Coupler Sebagi isolasi antar dua rangkaian yang berbeda. Dihubungkan oleh cahaya
Simbol Speaker Speaker Mengubah signal listrik menjadi suara
Simbol Mic Mic, Microphone Mengubah signal suara menjadi arus listrik
Simbol Op-Amp Op-Amp, Operational Amplifier Penguat signal input
Simbol Schmitt Trigger Schmitt Trigger Dapat mengurangi noise
Simbol ADC ADC, Analog to Digital Mengubah signal analog menjadi data digital
Simbol DAC DAC, Digital to Analog Mengubah data digital menjadi signal analog
Simbol Oscillator Crystal, Ocsilator Penghasil pulsa
Simbol Antenna
Simbol Antenna Antenna Pemancar dan penerima signa radio
Simbol Antenna Antenna
Simbol Antenna Dipole Antenna Gabungan dari simple Antenna
Simbol Gerbang Logika (Digital)
Simbol Gerbang NOT NOT Gate Output akan merupakan kebalikan input
Simbol Gerbang AND AND Gate Output akan 0 jika salah satu input 0
Simbol Gerbang NAND NAND Gate Output akan 1 jika salah satu input 0
Simbol Gerbang OR OR Gate Output akan 1 jika salah satu input 1
Simbol Gerbang NOR NOR Gate Output akan0 jika salah satu input 1
Simbol Gerbang EX-OR EX-OR Gate Output akan 0 jika input sama
SImbol D-Flip-Flop D-Flip-Flop Dapat berfungsi sebagai penyimpad data
Simbol Multiplexer Multiplexer 2 to 1 Menyeleksi salah satu data input yang akan dikirim ke output
Simbol Multiplexer Multiplexer 4 to 1
Simbol D-Multiplexer D-Multiplexer 1 to 4 Menyeleksi data input untuk dikirim ke salah satu output