Blogger Widgets

Senin, 23 November 2015

PERBEDAAN ANTARA:

1. Lampu Pijar

Cahaya lampu pijar berasal dari nyala filamen, kawat tipis dari tungsten (nama lain untuk wolfram). Saat lampu dinyalakan, arus listrik memanaskan filamen hingga suhu 2.200 derajat celsius hingga filamen berpijar. Supaya panas terkonsentrasi di sekitar filamen, tungsten ditempatkan dalam bola lampu kedap udara.


Gambar Bagan Lampu Pijar

Karena cahaya lampu dari proses pemanasan, kestabilan arus listrik menentukan nyala lampu. Tegangan listrik turun, suplai arus berkurang, lampu meredup. Hal sebaliknya juga berlaku.

Suhu pemanasan yang tak terlalu tinggi membuat pancaran sinar berwarna kuning. Intensitas cahaya atau tingkat kecerahan lampu pijar hanya sekitar 15 lumen/watt. Akibatnya, untuk menghasilkan cahaya lebih terang butuh energi listrik besar.

Namun, sebesar apa pun arus listrik yang diberikan, lebih dari 90% nya diubah jadi panas. Hanya 5 persen listrik yang diubah jadi cahaya. Itu jelas tidak efisien dan boros listrik.


Pemanasan filamen terus-menerus akan mengikis permukaan tungsten hingga penampang kawat mengecil hingga filamen putus dan lampu tak bisa digunakan lagi. Mudah putusnya filamen membuat usia hidup lampu hanya 1.000 jam atau empat bulan untuk pemakaian 8 jam per hari.


2. Lampu LED

Meski lebih hemat dari lampu pijar, keberadaan merkuri yang merupakan logam berat dalam lampu pendar jadi masalah baru karena merusak lingkungan dan mengganggu kesehatan. Tuntutan ada lampu yang kian hemat tetap ada. Selain itu, lampu masa depan pun harus bisa diaplikasikan lebih luas.

Lahirlah lampu berteknologi dioda pemancar cahaya (light-emitting diode/LED). Penelitian lampu LED dimulai 1960-an dengan menghasilkan lampu LED merah dan hijau. Baru pada 1990-an, LED biru hadir. Dengan temuan LED biru, LED putih bisa dibuat.
Gambar Bagan Lampu Pedar

Temuan atas LED biru itulah yang membuat ilmuwan Jepang Isamu Akasaki, Hiroshi Amano, dan Shuji Nakamura dianugerahi hadiah Nobel Fisika 2014.

Sumber pencahayaan lampu LED berasal dari dioda berupa semikonduktor dari material padat dan mampu mengalirkan arus listrik. Energi yang dilepaskan dari gerakan elektron dalam semikondutor itulah yang akan menghasilkan cahaya.

Saat listrik dialirkan, elektron bebas dari bagian negatif semikonduktor yang diperkaya elektron bebas mengalir ke bagian positif. Saat bersamaan, lubang elektron pada bagian positif bergerak ke bagian negatif.

Gerakan itu membuat elektron bebas jatuh ke lubang elektron. Akibatnya, elektron turun ke tingkat energi yang lebih stabil dan melepaskan foton/cahaya. Kian tinggi energi foton yang dihasilkan, cahaya yang dihasilkan kian tinggi frekuensinya atau panjang gelombangnya.

Oleh karena itu, warna cahaya yang diperoleh lampu LED bergantung pada campuran materi penyusun diodanya. Misalnya, campuran aluminium, galium, dan arsenik akan menghasilkan cahaya merah. Perpaduan indium, galium, dan nitrida memberi warna biru.

Dibandingkan ukuran pembangkit cahaya lampu pijar dan pendar, ukuran LED sangat kecil, luasnya kurang dari 1 milimeter persegi. ”Semakin besar LED, susunan atomnya makin mudah rusak sehingga sifat elektriknya berkurang,” ujar Rahmat yang juga meneliti LED.

Oleh karena itu, untuk membuat sebuah bola lampu umumnya tersusun beberapa LED. Ukuran kecil juga memungkinkan lampu LED ditempatkan pada berbagai sirkuit elektronik untuk beragam pencahayaan.

Tak hanya penerangan rumah atau jalan, rangkaian LED juga dimanfaatkan untuk pencahayaan beragam alat elektronik, mulai pengendali jarak jauh, layar monitor, telepon pintar, hingga televisi. Bahkan, LED juga bisa sebagai pengganti sinar matahari untuk menumbuhkan tanaman dalam ruang.

Lebih dari 50 persen energi listrik pada LED diubah jadi cahaya. Itu membuat LED lebih efisien dibandingkan lampu pendar, apalagi lampu pijar. Setiap 1 watt listrik mampu menghasilkan cahaya berintensitas 70-100 lumen. Usia pakai bisa lebih lama hingga 50.000 jam.

Proses produksi yang rumit membuat harga lampu LED masih mahal. Namun, jika dihitung biaya total pembelian dan pemakaian listrik, penggunaan LED tetap lebih murah.

Selain itu, LED juga rentan dengan temperatur tinggi yang akan membuatnya terlalu panas dan gagal beroperasi. Oleh karena itu, LED butuh arus listrik stabil dan pemasangan sirkuit listrik secara tepat.


Gambar Bagan Bola Lampu LED
 
 

3. Lampu Pedar (Lampu Hemat Energi)

Sifat boros lampu pijar mendorong ilmuwan dan perekayasa mencari bola lampu baru lebih efisien terkait energi. Lahirlah lampu pendar atau lampu fluorosensi pada 1938.

Lampu ini paling banyak digunakan di Indonesia, baik tabung (tubular lamp/TL) maupun kompak. Sebagian masyarakat menyebutnya lampu neon karena banyak digunakan pada neon box atau papan reklame.

Sejatinya, kedua lampu itu berbeda jenis. Proses menghasilkan cahaya keduanya sama, lewat proses eksitasi elektron. Namun, kandungan gas yang dieksitasi berbeda. Eksitasi pada lampu neon hanya sekali, sedangkan lampu pendar dua kali.

Saat lampu dialiri listrik, elektroda pada ujung tabung lampu pendar memancarkan elektron bebas. Elektron itu akan mengionisasi gas argon dalam tabung bertekanan rendah.

Arus listrik membuat elektron bebas dan ion gas argon bergerak cepat dari satu elektroda ke elektroda lain. Arus listrik juga mengubah merkuri dalam tabung dari cair jadi gas. Proses itu akan membuat partikel bergerak (elektron dan ion) bertabrakan dengan atom merkuri. Akibatnya, elektron merkuri tereksitasi, turun ke tingkat energi lebih stabil dan melepaskan energi dalam bentuk foton atau cahaya ultraviolet.

Selanjutnya, cahaya ultraviolet akan mengeksitasi atom fosfor pada lapisan dalam tabung. Fosfor itu pula yang memberi warna putih tabung. Pada proses eksitasi lanjutan itu akan dihasilkan cahaya tampak putih terlihat mata. Variasi cahaya lampu pendar bisa diatur berdasarkan komposisi fosfor".

Proses eksitasi lanjutan itu tak ada pada lampu neon. Gas yang digunakan pun tidak hanya argon, tapi juga neon dan kripton. Neon menghasilkan cahaya merah, sedang gas lain menghasilkan warna berbeda.


Lampu pendar menghasilkan intensitas cahaya lebih baik dari lampu pijar, 67 lumen/watt. Pengubahan cahaya ultraviolet menjadi cahaya tampak juga menghasilkan panas yang hilang ke lingkungan, tapi jumlahnya lebih sedikit. Usia rata-rata lampu lebih lama, 8.500-10.000 jam.
Gambar Bagan Lampu Pedar

Senin, 09 November 2015


Pengertian Dioda

Pengertian Dioda adalah komponen aktif yang memiliki dua kutub dan bersifat semikonduktor. Dioda juga bisa dialiri arus listrik ke satu arah dan menghambat arus dari arah sebaliknya. Dioda sebenarnya tidak memiliki karakter yang sempurna, melainkan memiliki karakter yang berhubungan dengan arus dan tegangan komplek yang tidak linier dan seringkali tergantung pada teknologi yang digunakan serta parameter penggunaannya.
Awal mulanya dioda adalah sebuah piranti kristal Cat’s Wahisker dan tabung hampa. Sedangkan pada saat ini, dioda sudah banyak dibuat dari bahan semikonduktor, contohnya : Silikon dan Germanium. Di karenakan pengembangannya yang dilakukan secara terpisah, dioda kristal (semikonduktor) lebih populer di bandingkan dengan dioda termionik. Dioda termionik pertama kali ditemukan oleh Frederick Guthrie pada tahun 1873, sedangkan dioda kristal ditemukan pada tahun 1874 oleh peneliti asal Jerman, Karl Ferdinand Braun.

Gambar Tentang Pengertian Dioda

Pengertian Dioda
Pengertian Dioda Termionik adalah piranti katub yang merupakan susunan elektroda di dalam sampul gelas. Bentuk pertama kali dari dioda termionik hampir sama dengan bola lampu pijar. Di dalam katub dioda termionik, arus listrik yang melalui filamen pemanas secara tidak langsung memanaskan katoda. Elektroda internal lainnya dilapisi dengan campuran barium dan strontium oksida yang merupakan oksida dari logam alkali tanah. Dari kegiatan tersebut menghasilkan pancaran termionik elektron ke ruang hampa. Walaupun demikian, elektron tidak dapat di pancarkan dengan mudah ke permukaan anoda yang tidak terpanasi ketika polaritas tegangan di balik.
Pengertian Dioda Semikondutor sebagian besar terdapat pada teknologi pertemuan P-N semikonduktor. Dioda P-N terdapat arus yang mengalir dari sisi Tipe-P (anoda) menuju sisi Tipe-N (katoda), akan tetapi tidak dapat mengalir ke arah sebaliknya. Dioda semikonduktor memiliki tipe lain yaitu dioda schottky yang di bentuk dari pertemuan antara logam dan semikonduktor sebagai ganti dari pertemuan P-N konvensional.
Demikain penjelasan singkat mengenai pengertian dioda, semoga artikel kali ini dapat berguna dan bermanfaat bagi anda semua. Baca juga artikel menarik lainnya, seperti

2.BENTUK DIODA


Berikut ini adalah pengertian dari Jenis-Jenis Dioda :
Dioda Emisi CahayaLight Emiting Diode (Dioda Emisi Cahaya)
Dioda yang sering disingkat LED ini merupakan salah satu piranti elektronik yang menggabungkan dua unsur yaitu optik dan elektronik yang disebut juga sebagai Opteolotronic.dengan masing-masing elektrodanya berupa anoda (+) dan katroda (-), dioda jenis ini dikategorikan berdasarkan arah bias dan diameter cahaya yang dihasilkan, dan warna nya.

Diode Photo (Dioda Cahaya)

Dioda Photo
Dioda jenis ini merupakan dioda yang peka terhadap cahaya, yang bekerja pada pada daerah-daerah reverse tertentu sehingga arus cahaya tertentu saja yang dapat melewatinya, dioda ini biasa dibuat dengan menggunakan bahan dasar silikon dan geranium. Dioda cahaya saat ini banyak digunakan untuk alarm, pita data berlubang yang berguna sebagai sensor, dan alat pengukur cahaya (Lux Meter).
Diode Varactor
Diode Varactor (Dioda Kapasitas)
Dioda jenis ini merupakan dioda yang unik, karena dioda ini memiliki kapasitas yang dapat berubah-ubah sesuai dengan besar kecilnya tegangan yang diberikan kepada dioda ini, contohnya jika tegangan yang diberikan besar, maka kapasitasnya akan menurun,berbanding terbalik jika diberikan tegangan yang rendah akan semakin besar kapasitasnya, pembiasan dioda ini secara reverse. Dioda jenis ini banyak digunakan sebagai pengaturan suara pada televisi, dan pesawat penerima radio.
Diode Rectifier
Diode Rectifier (Dioda Penyearah)
Dioda jenis ini merupakan dioda penyearah arus atau tegangan yang diberikan, contohnya seperti arus berlawanan (AC) disearahkan sehingga menghasilkan arus searah (DC). Dioda jenis ini memiliki karakteristik yang berbeda-beda sesuai dengan kapasitas tegangan yang dimiliki.
Dioda Zener
Diode Zener
Dioda jenis ini merupakan dioda yang memiliki kegunaan sebagai penyelaras tegangan baik yang diterima maupun yang dikeluarkan, sesuai dengan kapasitas dari dioda tersebut, contohnya jika dioda tersebut memiliki kapasitas 5,1 V, maka jika tegangan yang diterima lebih besar dari kapasitasnya, maka tegangan yang dihasilkan akan tetap 5,1 tetapi jika tegangan yang diterima lebih kecil dari kapasitasnya yaitu 5,1, dioda ini tetap mengeluarkan tegangan sesuai dengan inputnya.
Dapat disimpulkan bahwa Jenis-Jenis Dioda tersebut memiliki berbagai kegunaan tersendiri yang dapat memanipulasi berbagai tegangan yang masuk melalui dioda tersebut. Jenis-jenis Dioda diatas merupakan beberapa contoh jenis dioda yang saat ini sudah ada dan dikembangkan, masih banyak lagi contoh lain dari jenis dioda ini.

3.Cara Kerja Dioda

Cara Kerja Dioda merupakan prinsip dan langkah-langkah dioda dapat bekerja sebagai pendukung komponen perangkat elektronik. Dengan merupakan salah satu dari rangkaian pembentuk perangkat elektronik yang bersifat aktif. Dikatakan bersifat aktif ini karena dioda dapat bekerja dengan adanya muatan listrik yang melewati komponen-komponennya. Pada era modern ini, banyak sekali perangkat elektronik yang membutuhkan dioda sebagai salah satu komponennya. Dalam kehidupan sehari-hari kita bisa menemukan berbagai perangkat elektronik dengan penggunaan dioda sebagai komponen pendukungnya. Seperti televisi, amplifier, radio, lampu, AC, lemari es, dan perangkat-perangkat lainnya. Semua alat elektronik diatas menggunakan dioda karena dioda dapat memaksimalkan arus listrik bolak-balik sehingga bisa meningkatkan kinerja pada peralatan tersebut. Pada dioda selalu ada dua hal yang terkait, yakni katoda (+) dan anoda (-) yang saling berlawanan dan dilambangkan dengan panah yang menggambarkan ujung negative atau anoda, sedangkan lambang huruf ‘T’ terbaring untuk simbol sisi positif atau katoda pada dioda.

Gambar Skema Prinsip Kerja Dioda






Prinsip Kerja Dioda Secara Umum
 

Fungsi Dioda

Advertisement
Fungsi Dioda sangat penting didalam rangkaian elektronika. Karena dioda adalah komponen semikonduktor yang terdiri dari penyambung P-N. Dioda merupakan gabungan dari dua kata elektroda, yaitu anoda dan katoda. Sifat lain dari dioda adalah menghantarkan arus pada tegangan maju dan menghambat arus pada aliran tegangan balik. Selain itu, masih banyak lagi fungsi dioda lainnya, sebagai berikut :
  • Sebagai penyearah untuk komponen dioda bridge.
  • Sebagai penstabil tegangan pada komponen dioda zener.
  • Sebagai pengaman atau sekering.
  • Sebagai pemangkas atau pembuang level sinyal yang ada di atas atau bawah tegangan tertentu pada rangkaian clipper.
  • Sebagai penambah komponen DC didalam sinyal AC pada rangkaian clamper.
  • Sebagai pengganda tegangan.
  • Sebagai indikator untuk rangkaian LED (Light Emiting Diode).
  • Dapat digunakan sebagai sensor panas pada aplikasi rangkaian power amplifier.
  • Sebagai sensor cahaya pada komponen dioda photo.
  • Sebagai rangkaian VCO (Voltage Controlled Oscilator) pada komponen dioda varactor.
Secara keseluruhan dioda dapat kita contohkan sebagai katup, dimana katup tersebut akan terbuka pada saat air mengalir dari belakang menuju ke depan. Sedangkan katup akan menutup apabila ada dorongan aliran air dari depan katub. Simbol dioda digambarkan dengan anak panah yang diujungnya terdapat garis yang melintang. Cara kerja dioda dapat kita lihat dari simbolnya. Karena pada pangkal anak panah disebut sebagai anoda (P) dan pada ujung anak panah dapat disebut sebagai katoda (N).

Gambar Tentang Fungsi Dioda


Fungsi Dioda
Pada umumnya, dioda terbuat dari bahan silikon yang sudah dibekali tegangan pemicu. Tegangan pemicu ini sangat diperlukan agar elektron bisa langsung mengisi hole melalui area depletin layer. Didalam komponen dioda tidak akan terjadi pemindahan elekrton hole dari P ke N maupun sebaliknya. Itu di sebabkan hole dan elektron akan tertarik ke arah kutub yang berlawanan. Bahkan lapisan depletion layer semakin besar dan menghalangi terjadinya arus.
 5.POWER SUPPLY(ADAPTOR)SEDERHANA

1. Skema Power supply Sederhana


Daftar Komponen
  • Transformator
  • Dioda 4 buah atau Dioda Bridge
  • Elco ( Electrolit Condensator ) 1000uF/16V

Contoh penyambungan power supply 12 Volt DC


6.Cara Menggunakan Multimeter / Multitester

Cara Menggunakan Multimeter – Multimeter adalah alat yang berfungsi untuk mengukur Voltage (Tegangan), Ampere (Arus Listrik), dan Ohm (Hambatan/resistansi) dalam satu unit. Multimeter sering disebut juga dengan istilah Multitester atau AVOMeter (singkatan dari Ampere Volt Ohm Meter). Terdapat 2 jenis Multimeter dalam menampilkan hasil pengukurannya yaitu Analog Multimeter (AMM) dan Digital Multimeter (DMM).
Sehubungan dengan tuntutan akan keakurasian nilai pengukuran dan kemudahan pemakaiannya serta didukung dengan harga yang semakin terjangkau, Digital Multimeter (DMM) menjadi lebih populer dan lebih banyak dipergunakan oleh para Teknisi Elektronika ataupun penghobi Elektronika.
Dengan perkembangan teknologi, kini sebuah Multimeter atau Multitester tidak hanya dapat mengukur Ampere, Voltage dan Ohm atau disingkat dengan AVO, tetapi dapat juga mengukur Kapasitansi, Frekuensi dan Induksi dalam satu unit (terutama pada Multimeter Digital). Beberapa kemampuan pengukuran Multimeter yang banyak terdapat di pasaran antara lain :
  • Voltage (Tegangan) AC dan DC satuan pengukuran Volt
  • Current (Arus Listrik) satuan pengukuran Ampere
  • Resistance (Hambatan) satuan pengukuran Ohm
  • Capacitance (Kapasitansi) satuan pengukuran Farad
  • Frequency (Frekuensi) satuan pengukuran Hertz
  • Inductance (Induktansi) satuan pengukuran Henry
  • Pengukuran atau Pengujian Dioda
  • Pengukuran atau Pengujian Transistor

Bagian-bagian penting Multimeter

Multimeter atau multitester pada umumnya terdiri dari 3 bagian penting, diantanya adalah :
  1. Display
  2. Saklar Selektor
  3. Probe
Gambar dibawah ini Merupakan bagian penting dari Multimeter Digital dan Analog;